Respuesta :

Answer:

no real solutions,   [tex]x = \pm2i - 4[/tex]

Step-by-step explanation:

We can solve for x in the equation:

[tex]x(x+8)=-20[/tex]

by completing the square.

First, we can apply the distributive property to the left side:

  • a(b + c) = ab + ac

[tex]x(x) + x(8) = -20[/tex]

[tex]x^2 + 8x = -20[/tex]

Next, we can add (8/2)² to both sides:

[tex]x^2 + 8x + \left(\frac{8}2\right)^2 = -20 + \left(\frac{8}2\right)^2[/tex]

This simplifies as: [tex]4^2 = 16[/tex], so the equation becomes:

[tex]x^2 + 8x + 16 = -4[/tex]

We can now factor the left side as a perfect square trinomial:

[tex]\left(x + \frac{8}{2}\right)^2 = -4[/tex]

[tex](x + 4)^2 = -4[/tex]

Finally, we can take the square root of both sides to solve for x.

[tex]x + 4 = \pm\sqrt{-4}[/tex]

We can see that the solution for x involves the square root of a negative, which is not a real number, so this equation has no real solutions, meaning it doesn't cross the x-axis.

But, we can find an imaginary solution using the imaginary number i:

[tex]i = \sqrt{-1}[/tex]

↓↓↓

[tex]x + 4 = \pm\sqrt{-1}\sqrt4[/tex]

[tex]x + 4 =\pm i\sqrt4[/tex]

[tex]x + 4 = \pm2i[/tex]

[tex]\boxed{x = \pm2i - 4}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE