Answer:
B. -3.2 × 10⁻⁴ J
Explanation:
We can Calculate the The potential energy of this two-particle system, relative to the potential energy at infinite separation using the formula:
[tex] {\boxed{\sf{ U = k \dfrac{q_1 \times q_2}{r} }}}[/tex]
where:
• U is potential energy
• q_1 and q_1 are the two charges
• r is distance b/w the two charges
• k is coulomb's constant whose values is 8.99 × 10^9 Nm^2/C^2
To solve for the potential energy, substitute the given values in the above formula :
[tex]\sf U = \dfrac{ 8.99 \times 10^9 \: Nm^2/C^2 \: \times 5.5 \times 10^{-3} C \times -2.3 \times 10^{-8} C }{0.035 } [/tex]
[tex]\sf U = \dfrac{ - 113.72 \times {10 }^{ - 7} }{3.5} [/tex]
[tex] \sf U = - 3249.14 \times {10}^{ - 7} \ [/tex]
[tex] \sf U = - 3.2 \times 10^{-4} \ J [/tex]