Answer:
y = 6 cm
Step-by-step explanation:
To find the missing length [tex] y [/tex] in the similar triangles, we can set up a proportion using the corresponding sides.
Since, in similar triangles the corresponding sides are proportional.
The given proportion is:
[tex] \dfrac{4}{20} = \dfrac{y}{30} [/tex]
Now, cross-multiply to solve for [tex] y [/tex]:
[tex] 4 \times 30 = 20 \times y [/tex]
[tex] 120 = 20y [/tex]
Now, divide by 20 to find [tex] y [/tex]:
[tex] y = \dfrac{120}{20} [/tex]
[tex] y = 6 [/tex]
So, the missing length [tex] y [/tex] is 6 cm.