Respuesta :

the answer would be

3 + 6i


Answer:

The value of the given expression is [tex]\frac{15i}{2+i}=3(2i+1)[/tex]

Step-by-step explanation:

Given : Expression [tex]\frac{15i}{2+i}[/tex]

To find : The value of the given expression?

Solution :          

We solve the expression by rationalizing,

[tex]\frac{15i}{2+i}[/tex]

Rationalize by multiplying the Nr. and Dr. by 2-i

[tex]=\frac{15i}{2+i}\times \frac{2-i}{2-i}[/tex]

[tex]=\frac{15i(2-i)}{(2+i)(2-i)}[/tex]

Applying property, [tex](a+b)(a-b)=a^2-b^2[/tex]

[tex]=\frac{30i-15i^2}{2^2-i^2}[/tex]

We know, [tex]i^2=-1[/tex]

[tex]=\frac{30i-15(-1)}{2^2-(-1)}[/tex]

[tex]=\frac{30i+15}{4+1}[/tex]

[tex]=\frac{30i+15}{5}[/tex]

Divide by 5,

[tex]=6i+3[/tex]

[tex]=3(2i+1)[/tex]

Therefore, The value of the given expression is [tex]\frac{15i}{2+i}=3(2i+1)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE