Respuesta :

Answer:

[tex]y= 7\sqrt{2}[/tex] units

Step-by-step explanation:

Using tangent ratio:

[tex]\tan \theta = \frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

As per the statement:

In the given right angle triangle.

First find x:

Using tangent ratio:

[tex]\tan 45^{\circ} = \frac{7}{x}[/tex]

[tex]1 = \frac{7}{x}[/tex]

⇒x = 7 units

We have to find the value of y:

Using Pythagoras theorem;

[tex]\text{Hypotenuse side}^2=\text{opposite side}^2+\text{Adjacent side}^2[/tex]

Substitute the given values we have;

[tex]y^2 = 7^2+7^2[/tex]

⇒[tex]y^2 = 49+49 = 98[/tex]

⇒[tex]y = \sqrt{98} = \sqrt{49 \cdot 2} = \sqrt{7^2 \cdot 2}[/tex]

⇒[tex]y = 7\sqrt{2}[/tex] units

Therefore, the value of y is, [tex] 7\sqrt{2}[/tex] units

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE