Respuesta :
We are to determine if the given are differences of perfect cubes and in order to do so, we simply have to calculate for the cube root of the terms in the given.
(a) 9a³ - 27 = ((∛9)a)³ - 3³ ; NO
(b) 125a¹² - 72 = (5a⁴)³ - (∛72)³ ; NO
(c) 216a⁶ - 27y³ = (6a²)³ - (3y)³ ; YES
(d) 8a¹⁵ - 27 = (2a⁵)³ - (3)³ ; YES
(e) 225a³ - 216 = (15a)³ - (6)³ ; YES
Therefore, the answers are the third, fourth, and fifth choices.
(a) 9a³ - 27 = ((∛9)a)³ - 3³ ; NO
(b) 125a¹² - 72 = (5a⁴)³ - (∛72)³ ; NO
(c) 216a⁶ - 27y³ = (6a²)³ - (3y)³ ; YES
(d) 8a¹⁵ - 27 = (2a⁵)³ - (3)³ ; YES
(e) 225a³ - 216 = (15a)³ - (6)³ ; YES
Therefore, the answers are the third, fourth, and fifth choices.
we know that
A perfect cube is a whole number which is the cube of another whole number
so
A number is a perfect cube, if the cubic root of the number is equal to a whole number
case 1)
[tex] 9a^{3} - 27[/tex]
[tex] 9a^{3} - 27 = 9a^{3}-3 ^{3} [/tex]
in this problem the cubic root of [tex] 9 [/tex] is not a whole number
therefore
The case 1) is not a differences of perfect cubes
case 2)
[tex] 125a^{12} - 72 [/tex]
[tex] 125a^{12} - 72=5^{3}(a^{4})^{3} -\sqrt[3]{72} [/tex]
in this problem the cubic root of [tex] 72 [/tex] is not a whole number
therefore
The case 2) is not a differences of perfect cubes
case 3)
[tex] 216a^{6}- 27y^{3} [/tex]
[tex] 216a^{6}- 27y^{3} = 6^{3}(a^{2})^{3}- 3^{3}y^{3} = (6a^{2})^{3} - (3y)^{3}[/tex]
therefore
The case 3) is a differences of perfect cubes
case 4)
[tex] 8a^{15} - 27 [/tex]
[tex] 8a^{15} - 27 = 2^{3}( a^{5})^{3} - 3^{3} = (2a^{5} )^{3} - 3^{3} [/tex]
therefore
The case 4) is a differences of perfect cubes
case 5)
[tex] 225a^{3} - 216 [/tex]
[tex] 225a^{3} - 216 =5^{3}a^{3} -6^{3}= (5a)^{3} - 6^{3} [/tex]
therefore
The case 5) is a differences of perfect cubes
therefore
the answer is
[tex] 216a^{6}- 27y^{3} [/tex]
[tex] 8a^{15} - 27 [/tex]
[tex] 225a^{3} - 216 [/tex]