Respuesta :

[tex]\bf x^2+y^2-16x-12y+75=0 \\\\\\ 5x^2+5y^2-32x-24y+75=0[/tex]

so, let's do the first one

[tex]\bf x^2+y^2-16x-12y+75=0\impliedby \textit{we'll start by grouping} \\\\\\ (x^2-16x+\boxed{c}^2)+(y^2-12y+\boxed{d}^2)=-75[/tex]

now, in a perfect square trinomial, we know the middle term is just the product of 2 times the square root of the term on the left end, times the square root of the term on the right

that means [tex]\bf (x^2-16x+\boxed{c}^2)+(y^2-12y+\boxed{d}^2)=-75 \\\\\\ 2xc=16x\implies c=\cfrac{16x}{2x}\implies \boxed{c}=8 \\\\\\ 2yd=12y\implies d=\cfrac{12y}{2y}\implies \boxed{d}=6\\\\ [/tex]

so, those are our missing values, now
bear in mind all we're doing is borrowing from our good friend Mr Zero, 0
so, if we add 8² and 6², we also have to subtract 8² and 6²

then  [tex]\bf (x^2-16x+8^2)+(y^2-12y+6^2)-8^2-6^2=-75 \\\\\\ (x-8)^2+(y-6)^2=-75+100\implies \boxed{(x-8)^2+(y-6)^2=5^2}[/tex]

so, that's the equation of the circle for the first equation, centered at 8,6 and with a radius of 5

-------------------------------------------------------------------------------------------

now, onto the 2nd equation, we'll do the same

[tex]\bf 5x^2+5y^2-32x-24y+75=0\impliedby grouping \\\\\\ (5x^2-32x)+(5y^2-24y)=-75 \\\\\\ 5\left( x^2-\frac{32x}{5}+\boxed{e}^2 \right)+5\left( y^2-\frac{24y}{5}+\boxed{f}^2 \right)=-75\\\\ -----------------------------\\\\ 2xe=\cfrac{32x}{5}\implies e=\cfrac{16}{5} \\\\\\ 2yf=\cfrac{24y}{5}\implies f=\cfrac{12}{5}\\\\ -----------------------------[/tex]

[tex]\bf 5\left( x^2-\frac{32x}{5}+\left( \frac{16}{5} \right)^2 \right)+5\left( y^2-\frac{24y}{5}+\left( \frac{12}{5} \right)^2 \right)-5\left( \frac{16}{5} \right)^2-5\left( \frac{12}{5} \right)^2 \\\\=-75 \\\\\\ 5\left( x-\frac{16}{5} \right)^2+5\left( y-\frac{12}{5} \right)^2=-75+\cfrac{256}{5}+\cfrac{144}{5}[/tex]

[tex]\bf 5\left( x-\frac{16}{5} \right)^2+5\left( y-\frac{12}{5} \right)^2=5\implies \left( x-\frac{16}{5} \right)^2+\left( y-\frac{12}{5} \right)^2=\cfrac{5}{5} \\\\\\ \boxed{\left( x-\frac{16}{5} \right)^2+\left( y-\frac{12}{5} \right)^2=1}[/tex]

so, that's a circle centered at 16/5 and 12/5, with  a radius of 1
so .those are the two circle's equations

notice, the picture below, the radius of 5, the first equation, is the bigger circle
Ver imagen jdoe0001
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE