1. Perfect square trinomials, are 2nd degree polynomials, of the form [tex]a x^{2} +bx+c[/tex] so that [tex]a \neq 0, b \neq 0, c \neq 0[/tex], which can be written as perfect squares.
2. For example [tex](x+1) ^{2} = x^{2} +2x+1
(3x-1)^{2}= (3x)^{2}-2(3x)+(-1) ^{2}= 9x^{2}-6x+1
[/tex]
3. Thus [tex]x^{2} +2x+1, 9x^{2}-6x+1 [/tex] are perfect square trinomials.
4. [tex] x^{2} -bx+100= x^{2} -bx+ 10^{2}= (x+10)^{2} or (x-10)^{2}[/tex]
5. In the first case -b=20, so b=-20. In the second case, -b=-20, so b=20.
6. b∈{-20, 20}