yoloynn
contestada

lg(x-y+1)=0 and 1+lg (xy)=0,show x=y=1/√10
pls help I'm confused about how it works i kept getting 1/10.

Respuesta :

Assuming [tex]\mathrm{lg}\,x=\log_{10}x[/tex], you have from the first equation

[tex]\mathrm{lg}(x-y+1)=0\implies 10^{\mathrm{lg}(x-y+1)}=10^0[/tex]
[tex]\implies x-y+1=1\implies x-y=0\implies x=y[/tex]

From the second, you get

[tex]1+\mathrm{lg}(xy)=0\implies\mathrm{lg}(xy)=-1\implies10^{\mathrm{lg}(xy)}=10^{-1}[/tex]
[tex]\implies xy=\dfrac1{10}[/tex]

Since [tex]x=y[/tex], you have

[tex]x^2=\dfrac1{10}\implies x=y=\pm\dfrac1{\sqrt{10}}[/tex]
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE