Answer:
[tex]x=16\text{ or }x=-2[/tex]
Step-by-step explanation:
We have been given a quadratic equation and we are asked to solve for x.
[tex]x^{2}-14x+31=63[/tex]
Let us subtract 63 from both sides of our equation.
[tex]x^{2}-14x+31-63=63-63[/tex]
[tex]x^{2}-14x-32=0[/tex]
Now we will factor our given quadratic equation by splitting the middle term.
[tex]x^{2}-16x+2x-32=0[/tex]
[tex]x(x-16)+2(x-16)=0[/tex]
[tex](x-16)(x+2)=0[/tex]
[tex](x-16)=0\text{ or }(x+2)=0[/tex]
[tex]x-16+16=0+16\text{ or }x+2-2=0-2[/tex]
[tex]x=16\text{ or }x=-2[/tex]
Therefore, our quadratic equation has two solutions.