Answer:
Statement 1 and 2 are False.
Statement 3 and 4 are True.
Step-by-step explanation:
Given Statements are:
1. [tex]a^4\times a^3\times a = a^7[/tex]
2. 52 × 34 = 136
3. [tex]x^6\times x^0\times x^2\times x^3 = x^{11}[/tex]
4. [tex]7m^2\times2m\times4m^5 = 56m^8[/tex]
To Find: statements are true or false
LHS means left hand side and RHS means Right hand side
Law used, [tex] x^a\times xa^b=x^{a+b}[/tex]
1).
[tex]a^4\times a^3\times a = a^7[/tex]
LHS = [tex]a^4\times a^3\times a[/tex]
= [tex]a^{4+3+1}[/tex]
= [tex]a^8[/tex]
RHS = [tex]a^7[/tex]
LHS ≠ RHS
Therefore, Statement is false
2).
52 × 34 = 136
LHS = 52 × 34
= 1768
RHS = 136
LHS ≠ RHS
Therefore, Statement is False.
3).
[tex]x^6\times x^0\times x^2\times x^3 = x^{11}[/tex]
LHS = [tex]x^6\times x^0\times x^2\times x^3[/tex]
= [tex]x^{6+0+2+3}[/tex]
= [tex]x^{11}[/tex]
RHS = [tex]x^{11}[/tex]
LHS = RHS
Therefore, Statement is true.
4).
[tex]7m^2\times2m\times4m^5 = 56m^8[/tex]
LHS = [tex]7m^2\times2m\times4m^5[/tex]
= [tex]7\times2\times4\times m^{2+1+5}[/tex]
= [tex]56 m^8[/tex]
RHS = [tex]56m^8[/tex]
LHS = RHS
Therefore, Statement is true.