Respuesta :

For this case we have:

By definition, the distributive property states that:

[tex](a + b) (c + d) = ac + ad + bc + bd[/tex]

In addition, we know that: [tex]ax * bx = (ab) x ^ 2[/tex], that is, the exponents are added together.

If we have:[tex](4y - 3)\ and\ (2y ^ 2 + 3y - 5)[/tex], your product is given by:

[tex](4y - 3) (2y ^ 2 + 3y - 5) = (4 * 2) y^{1 + 2} + (4 * 3) y^{1 + 1} - (4 * 5) y^{1 +0} - (3 * 2) y ^ {0 + 2} - (3 * 3) y ^ {0 + 1} - (3 * (-5))[/tex]

[tex](4y - 3) (2y ^ 2 + 3y - 5) = 8y ^ 3 + 12y ^ 2-20y ^ 1-6y ^ 2-9y ^ 1 - (- 15)[/tex]

[tex](4y - 3) (2y ^ 2 + 3y - 5) = 8y ^ 3 + (12-6) y^ 2 + (- 20-9)y - (-15)[/tex]

Taking into account that equal signs are added and the same sign is placed, and that [tex]- * - = +[/tex]we have:

[tex](4y - 3) (2y ^ 2 + 3y - 5) = 8y ^ 3 + 6y ^ 2-29y + 15[/tex]

So,[tex](4y - 3) (2y ^ 2 + 3y - 5) = 8y ^ 3 + 6y ^ 2-29y + 15[/tex]

Answer:

Option D


The product of the two expressions given is; 8y³ +6y²-29y +15

Product of polynomials

The product of the polynomials given can be evaluated as follows;

  • (4y − 3)(2y2 + 3y − 5)

Upon multiplication of the terms we have;

  • 8y³ + 12y² -20y -6y² -9y +15

  • = 8y3 + 6y2 − 29y + 15

Read more on multiplication of polynomials;

https://brainly.com/question/50237

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE