Respuesta :
Magnitude of sum of perpendicular vectors [tex]m[/tex] and [tex]n[/tex] is equal to:
[tex]\sqrt{29.2^2+35.2^2}=\sqrt{2091.68}\approx 45.7\;[m][/tex]
[tex]\sqrt{29.2^2+35.2^2}=\sqrt{2091.68}\approx 45.7\;[m][/tex]

Answer:
The magnitude of sum of m and n is 45.7 meters.
Step-by-step explanation:
The magnitude of m is 29.2 meter, and the magnitude of n is 35.2 meters.
The magnitude of m, |m| = 29.2 m
The magnitude of n, |n| = 35.2 m
Angle between m and n is 90°
If we add m and n
Let sum of m and n is p
[tex]\vec{p}=\vec{m}+\vec{n}[/tex]
The magnitude of p,
[tex]|p|=\sqrt{|m|^2+|n|^2}[/tex]
[tex]|p|=\sqrt{29.2^2+35.2^2}[/tex]
[tex]|p|=\sqrt{852.64+1239.04}[/tex]
[tex]|p|=\sqrt{2091.68}\approx 45.7\ m[/tex]
Hence, The magnitude of sum of m and n is 45.7 meters.