Respuesta :

You've established that

[tex]\displaystyle\sum_{n\ge1}\frac1{2^n}\le\int_1^\infty\frac{\mathrm dx}{2^x}[/tex]

so all you need to do is compute the integral. Rewrite the integrand as

[tex]\dfrac1{2^x}=2^{-x}=e^{\ln2^{-x}}=e^{-x\ln2}[/tex]

and replace [tex]y=-x\ln2[/tex], so that [tex]\mathrm dy=-\ln2\,\mathrm dx[/tex]. Then

[tex]\displaystyle\int_{x=1}^{x\to\infty}\frac{\mathrm dx}{2^x}=\int_{y=-\ln2}^{y\to-\infty}e^y\,\frac{\mathrm dy}{-\ln 2}=\frac1{\ln2}\int_{-\infty}^{-\ln2}e^y\,\mathrm dy[/tex]

By the fundamental theorem of calculus, this evaluates to

[tex]\dfrac1{\ln2}e^y\bigg|_{y\to-\infty}^{y=-\ln2}=\dfrac1{\ln2}\left(e^{-\ln2}-\lim_{y\to-\infty}e^y\right)=\dfrac{e^{-\ln2}}{\ln2}=\dfrac{\frac12}{\ln2}=-\dfrac1{2\ln2}=\dfrac1{\ln4}[/tex]

and so the series converges.

You also could have used the fact that the series is geometric with common ratio less than 1 to arrive at the same conclusion, with the added perk of being able to find the exact value of the sum to corroborate this.
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE