Respuesta :
Firstly, put Derek and Paul's collection together:
1950, 1952, 1908, 1902, 1955, 1954, 1901, 1910, 1929, 1935, 1928, 1930, 1925, 1932, 1933, 1920
1950+1952+1908+1902+1955+1954+ 1901+1910+1929+1935+1928+1930+ 1925+ 1932+1933+1920
=30864
=30864÷16
=1929
∴the mean is 1929.
Median:
1901, 1902, 1908, 1910, 1920, 1925, 1928, 1929, 1930, 1932, 1933, 1935,
1950, 1952, 1954, 1955
1930÷1929
=1.0005184
= Median
Range:
1955-1901
=54
∴the range is 54.
1950, 1952, 1908, 1902, 1955, 1954, 1901, 1910, 1929, 1935, 1928, 1930, 1925, 1932, 1933, 1920
1950+1952+1908+1902+1955+1954+ 1901+1910+1929+1935+1928+1930+ 1925+ 1932+1933+1920
=30864
=30864÷16
=1929
∴the mean is 1929.
Median:
1901, 1902, 1908, 1910, 1920, 1925, 1928, 1929, 1930, 1932, 1933, 1935,
1950, 1952, 1954, 1955
1930÷1929
=1.0005184
= Median
Range:
1955-1901
=54
∴the range is 54.
Answer:
for Derek's collection :
Mean= 1929
Median= 1930
Range= 54
IQR = 48
MAD= 23.75
for Paul's collection:
Mean= 1929
Median= 1929.5
Range= 15
IQR = 6
MAD= 3.5
Step-by-step explanation:
Derek's collection:
1950, 1952, 1908, 1902, 1955, 1954, 1901, 1910
Mean is given by:
[tex]Mean=\dfrac{1950+1952+1908+1902+1955+1954+1901+1910}{8}\\\\\\Mean=\dfrac{15432}{8}\\\\\\Mean=1929[/tex]
Now absolute deviation from mean is:
|1950-1929|= 21
|1952-1929|= 23
|1908-1929|= 21
|1902-1929|= 27
|1955-1929|= 26
|1954-1929|= 25
|1901-1929|= 28
|1910-1929|= 19
and the mean of these absolute deviation gives the MAD of the data i.e.
[tex]MAD=\dfrac{21+23+21+27+26+25+28+19}{8}\\\\\\MAD=23.75[/tex]
Now, on arranging the data in increasing order we get:
1901 1902 1908 1910 1950 1952 1954 1955
The least value is: 1901
Maximum value is: 1955
Range is: Maximum value-Least value
Range=1955-1901
Range= 54
Also, the median lie between 1910 and 1950 and is calculated as:
[tex]Median=\dfrac{1910+1950}{2}\\\\\\Median=\dfrac{3860}{2}\\\\\\Median=1930[/tex]
Also, the lower set of data is:
1901 1902 1908 1910
and the median of lower set of data also known as first quartile or lower quartile is:
[tex]Q_1=\dfrac{1902+1908}{2}\\\\\\Q_1=\dfrac{3810}{2}\\\\\\Q_1=1905[/tex]
and upper set of data is:
1950 1952 1954 1955
and the median of upper set of data i.e. upper quartile or third quartile is:
[tex]Q_3=\dfrac{1952+1954}{2}\\\\\\Q_3=\dfrac{3906}{2}\\\\\\Q_3=1953[/tex]
Hence, IQR is calculated as:
[tex]IQR=Q_3-Q_1\\\\\\i.e.\\\\\\IQR=1953-1905\\\\\\IQR=48[/tex]
Paul's collection:
1929, 1935, 1928, 1930, 1925, 1932, 1933, 1920
Mean is given by:
[tex]Mean=\dfrac{1929+1935+1928+1930+1925+1932+1933+1920}{8}\\\\\\Mean=1929[/tex]
Now absolute deviation from mean is:
|1929-1929|=0
|1935-1929|= 6
|1928-1929|= 1
|1930-1929|= 1
|1925-1929|= 4
|1932-1929|= 3
|1933-1929|= 4
|1920-1929|= 9
Hence, we get:
[tex]MAD=\dfrac{6+1+1+4+3+4+9}{8}\\\\\\MAD=\dfrac{28}{8}\\\\\\MAD=3.5[/tex]
Now, on arranging the data in increasing order we get:
1920 1925 1928 1929 1930 1932 1933 1935
Least value= 1920
Maximum value= 1935
Range= 15 ( Since, 1935-1920=15 )
The median lie between 1929 and 1930
Hence, Median= 1929.5
Also, lower set of data is:
1920 1925 1928 1929
and median of lower set of data is the first quartile or upper quartile and is calculated as:
[tex]Q_1=\dfrac{1925+1928}{2}\\\\\\Q_1=1926.5[/tex]
and the upper set of data is:
1930 1932 1933 1935
Hence, we get:
[tex]Q_3=\dfrac{1932+1933}{2}\\\\\\Q_3=1932.5[/tex]
Hence, IQR is calculated as:
[tex]IQR=Q_3-Q_1\\\\\\IQR=1932.5-1926.5\\\\\\IQR=6[/tex]