Respuesta :

8828
The vertex is (3,3) and the axis is 3

Answer:

Vertex is (3,3)

Axis of symmetry is x=3

Step-by-step explanation:

Given : Function [tex]y = 2x^2 -12x + 21[/tex]

To find : The axis of symmetry and the vertex of the given function.

Solution :

The given function is in the form of quadratic equation [tex]y=ax^2+bx+c[/tex]

Comparing with the given function [tex]y = 2x^2 -12x + 21[/tex]

a=2 , b=-12  and c=21

x-coordinate of axis of symmetry and vertex

Axis of symmetry is given by [tex]x=-\frac{b}{2a}[/tex]

Substitute the value,

[tex]x=-\frac{-12}{2(2)}[/tex]

[tex]x=\frac{12}{4}[/tex]

[tex]x=3[/tex]

For y-coordinate of axis substitute x=3 in y

[tex]y = 2(3)^2 -12(3) + 21[/tex]

[tex]y = 2(9)-36+ 21[/tex]

[tex]y = 18-15[/tex]

[tex]y = 3[/tex]

Therefore, The vertex of function is (3,3).

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE