Answer with explanation:
⇒Formula defining Geometric Sequence and the sequence is
Let a be the first term and r be the common difference.
[tex]t_{1}=64\\\\t_{n}=(t_{n-1})^2\\\\ar^{n-1}=(ar^{n-2})^2\\\\a_{n}=ar^{n-1}\\\\ar^{n-1}=a^2r^{2n-2}\\\\a^{2-1}r^{2n-2-n+1}=1\\\\a*r^{n-1}=1\\\\64*r^{n-1}=1\\\\r^{n-1}=\frac{1}{64}\\\\r^{n-1}=[\frac{1}{4}]^3\\\\r=\frac{1}{4}\\\\ \text{So,the sequence is}\\\\64,64*\frac{1}{4},64*[\frac{1}{4}]^2,64*[\frac{1}{4}]^3,64*[\frac{1}{4}]^4,.......\\\\=64, 16,4,1,\frac{1}{4},\frac{1}{16},.....[/tex]