Respuesta :

jbmow
f=(h,k+p) = (2,-2)
then           h = 2
and           -2= k + p
Directrix = 0 = k - p

Solve these 2 equations and 2 unknowns yields k=-1 and p=-1
The equation is therefore,
y=(1/4p)(x - 2)^2 -1

Answer:

The equation of the parabola is [tex](x-2)^2=-4(y+1)[/tex].

Step-by-step explanation:

The standard form of the parabola is,

[tex](x-h)^2=4p(y-k)[/tex]

Where, (h,k+p) is focus and directrix is y=k-p

It is given that the focus of (2,-2) and a directrix of y = 0

[tex](h,k+p)=(2,-2)[/tex]

[tex]h=2[/tex]

[tex]k+p= -2[/tex]        ... (1)

Since directrix is y=0,

[tex]k-p=0[/tex]           ... (2)

Add equation 1 and 2.

[tex]2k=-2[/tex]

[tex]k=-1[/tex]

Put this value in equation 2.

[tex]-1-p=0[/tex]

[tex]p=-1[/tex]

Now we have p= -1, k= -1and h=2.

The equation of the parabola is,

[tex](x-2)^2=4(-1)(y+1)[/tex]

[tex](x-2)^2=-4(y+1)[/tex]

Therefore the equation of the parabola is [tex](x-2)^2=-4(y+1)[/tex].

Ver imagen DelcieRiveria
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE