If an object moves in uniform circular motion in a circle of radius R = 1.0 meter, and the object takes 4.0 seconds to complete ten revolutions, calculate the centripetal acceleration.

Respuesta :

a = ω²r

r = 1 m
ω = 2πf = 2π * 10 / 4 = π*5 s⁻¹

Answer:

[tex]a_c=246.5 \frac{m}{s^2}[/tex]

Explanation:

The formula for centripetal acceleration is:

[tex]a_c=rw^2[/tex]

Where,

[tex]r:[/tex] radius.

[tex]w:[/tex]Angular speed.

Angular speed is defined by:

[tex]w=\frac{\Delta\theta}{\Delta t}[/tex]

Where,

[tex]\theta:[/tex] position angle.

[tex]t:[/tex] time.

In this case we have that the object takes 4.0 seconds to complete ten revolutions.

You have to know that 1 revolution = [tex]2\pi rad[/tex], then

10 revolutions= [tex]10.2\pi rad = 20\pi rad[/tex]

Replacing

[tex]\Delta\theta=20\pi rad\\\Delta t=4.0s[/tex]

in the formula of Angular speed:

[tex]w=\frac{\Delta\theta}{\Delta t}\\\\w=\frac{20\pi rad}{4.0s}[/tex]

[tex]w=5\pi \frac{rad}{s}\\w=15.7\frac{rad}{s}[/tex]

Now we have,

[tex]a_c=rw^2\\a_c=r(15.7\frac{rad}{s})^2[/tex]

r=1.0m

[tex]a_c=1.0m(15.7\frac{rad}{s})^2\\\\a_c=1.0(246.5)\frac{m}{s^2} \\\\a_c=246.5\frac{m}{s^2}[/tex]

Then the centripetal acceleration is:

[tex]a_c=246.5 \frac{m}{s^2}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE