Respuesta :

[tex]p=1[/tex]

To better understand the problem see the attached figure

we have

[tex]\frac{2}{5}+p=\frac{4}{5}+\frac{3}{5}p[/tex]

Multiply by [tex]5[/tex] both sides

[tex]5(\frac{2}{5}+p)=5(\frac{4}{5}+\frac{3}{5}p)[/tex]

[tex]2+5p=4+3p[/tex]

Group terms that contain the same variable p and move the constant to the other side of the equation

[tex]5p-3p=4-2[/tex]

[tex]2p=2[/tex]

[tex]p=1[/tex]

Ver imagen calculista

Answer:

p=1

Step-by-step explanation:

We are given that an equation

[tex]\frac{2}{5}+p=\frac{4}{5}+\frac{3}{5}p[/tex]

We have to find the solution of given linear equation .

Subtraction property of equality

[tex]p-\frac{3}{5}p+\frac{2}{5}=\frac{4}[5}[/tex]

[tex]\frac{5p-3p}{5}+\frac{2}{5}=\frac{4}{5}[/tex]

Combine like terms

[tex]\frac{2}{5}p+\frac{2}{5}=\frac{4}{5}[/tex]

[tex]\frac{2}{5}p=\frac{4}{5}-\frac{2}{5}[/tex]

Subtraction property of equality

[tex]\frac{2}{5}p=\frac{2}{5}[/tex]

When a fraction term in multiply  goes  form one side to other side then the term will be reciprocal.

[tex]p=\frac{2}{5}\times \frac{5}{2}[/tex]

[tex]p=1[/tex]

Hence, p=1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE