Respuesta :
[tex]p=1[/tex]
To better understand the problem see the attached figure
we have
[tex]\frac{2}{5}+p=\frac{4}{5}+\frac{3}{5}p[/tex]
Multiply by [tex]5[/tex] both sides
[tex]5(\frac{2}{5}+p)=5(\frac{4}{5}+\frac{3}{5}p)[/tex]
[tex]2+5p=4+3p[/tex]
Group terms that contain the same variable p and move the constant to the other side of the equation
[tex]5p-3p=4-2[/tex]
[tex]2p=2[/tex]
[tex]p=1[/tex]

Answer:
p=1
Step-by-step explanation:
We are given that an equation
[tex]\frac{2}{5}+p=\frac{4}{5}+\frac{3}{5}p[/tex]
We have to find the solution of given linear equation .
Subtraction property of equality
[tex]p-\frac{3}{5}p+\frac{2}{5}=\frac{4}[5}[/tex]
[tex]\frac{5p-3p}{5}+\frac{2}{5}=\frac{4}{5}[/tex]
Combine like terms
[tex]\frac{2}{5}p+\frac{2}{5}=\frac{4}{5}[/tex]
[tex]\frac{2}{5}p=\frac{4}{5}-\frac{2}{5}[/tex]
Subtraction property of equality
[tex]\frac{2}{5}p=\frac{2}{5}[/tex]
When a fraction term in multiply goes form one side to other side then the term will be reciprocal.
[tex]p=\frac{2}{5}\times \frac{5}{2}[/tex]
[tex]p=1[/tex]
Hence, p=1