Respuesta :

squar root both sides
z=+/-0.8
if you are having trouble wit the decimals

0.64=64/100
so if you squar root both sides
remember [tex] \sqrt{ \frac{x}{y} } = \frac{ \sqrt{x} }{ \sqrt{y} } [/tex] so
[tex] \sqrt{ \frac{64}{100} } = \frac{ \sqrt{64} }{ \sqrt{100} } = \frac{ \sqrt{8} }{ \sqrt{10} } [/tex]=+/-0.8

Answer:

[tex]z = \pm 0.8[/tex]

Step-by-step explanation:

Use exponent rules:

[tex]\sqrt[n]{x^n} = x[/tex]

Solve the equation:

[tex]z^2 = 0.64[/tex]

Taking square root both sides we have;

[tex]\sqrt{z^2} = \pm \sqrt{0.64}[/tex]

Apply the exponent rule we have;

[tex]z = \pm \sqrt{0.64}[/tex]

We can write 0.64 as:

[tex]0.64 = 0.8 \cdot 0.8 = (0.8)^2[/tex]

then;

[tex]z = \pm \sqrt{(0.8)^2}[/tex]

Simplify:

[tex]z = \pm 0.8[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE