Respuesta :

Answer:

-2

Step-by-step explanation:

y = −2− x 2 y = - 2 - x 2

Answer:

[tex]24x^{2}y^2[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{5cm} \underline{Binomial Theorem}\\\\$\displaystyle (a+b)^n=\sum^{n}_{k=0}\binom{n}{k} a^{n-k}b^{k}$\\\\\\where \displaystyle \binom{n}{k} = \frac{n!}{k!(n-k)!}\\\end{minipage}}[/tex]

We can use the Binomial Theorem to find any term of a binomial expansion.  

The first term is when k = 0, so the third term is when k = 2.

Compare the given expression (x + 2y)⁴ with the formula to find the values of a, b and n.  

Therefore:

  • a = x
  • b = 2y
  • n = 4
  • k = 2

Substitute the values into the formula to find the third term:

[tex]\implies \displaystyle\binom{4}{2}x^{4-2}(2y)^2[/tex]

[tex]\implies \dfrac{4!}{2!(4-2)!}x^{2}2^2y^2[/tex]

[tex]\implies \dfrac{4 \times 3\times \diagup\!\!\!\!2\times \diagup\!\!\!\!1}{2\times 1\times \diagup\!\!\!\!2\times \diagup\!\!\!\!1}\;x^{2}4y^2[/tex]

[tex]\implies \dfrac{12}{2}\:x^24y^2[/tex]

[tex]\implies 6x^{2}4y^2[/tex]

[tex]\implies 24x^{2}y^2[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE