Respuesta :

Similarity Criteria: Two Triangles are similar, if any one of the similarity criteria (AAA), (SSS), (SAS) is satisfied.

Two triangles are similar, if:

Their corresponding angles are equal. Their corresponding sides are in the same ratio.

(i)

Yes, the pair of triangles are similar.

In  ΔABC and ΔPQR,

∠A = ∠P = 60°                                        (Given)

∠B = ∠Q = 80°                                        (Given)

∠C = ∠R = 40°                                          (Given)

∴ ΔABC ~ ΔPQR (AAA similarity criterion)

(ii)

Yes, the pair of triangles are similar.

In  ΔABC and ΔPQR,

AB/QR = 2/4= 1/2 = BC/RP = 2.5 / 5=1/2 =CA/PQ =3/6=1/2

∴  ΔABC ~ ΔQRP (SSS similarity criterion)

(iii)

No, the pair of triangles are not similar.

In ΔLMP and ΔDEF,

LM = 2.7, MP = 2, LP = 3, EF = 5, DE = 4, DF = 6

MP/EF = 2/5

LP/DF = 3/6 = 1/2

LM/DE= 2.7/4 =

Here, MP/EF≠  LP/DF ≠ LM/DE

Hence, ΔLMP and ΔDEF are not similar.

(iv)

Yes, the pair of triangles are similar.

In ΔMNL and ΔQPR, we have

MN/QP = ML/QR = 1/2

∠M = ∠Q = 70°

∴ ΔMNL ~ ΔQPR (SAS similarity criterion)

(v)

No, the pair of triangles are not similar.

In ΔABC , ∠A is given but the included side AC is not given.

Hence, ΔABC and ΔDEF are not similar.

(vi)

Yes, the pair of triangles are similar.

In ΔDEF,we have

∠D + ∠E + ∠F = 180° (sum of angles of a triangle)

⇒ 70° + 80° + ∠F = 180°

⇒ ∠F = 180° – 70° – 80°

⇒ ∠F = 30°

In PQR, we have

∠P + ∠Q + ∠R = 180 (Sum of angles of Δ)

⇒ ∠P + 80° + 30° = 180°

⇒ ∠P = 180° – 80° -30°

⇒ ∠P = 70°

In ΔDEF and ΔPQR, we have

∠D = ∠P = 70°

∠F = ∠Q = 80°

∠F = ∠R = 30°

Hence, ΔDEF ~ ΔPQR (AAA similarity criterion)

To know more about triangles visit: brainly.com/question/2773823

#SPJ4

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE