How many moles of nitrogen are formed when 58.6 g of KNO3 decomposes according to the following reaction? The molar mass of KNO3 is 101.11 g/mol.

4 KNO3(s) → 2 K2O(s) + 2 N2(g) + 5 O2(g)

Respuesta :

Hope this helps you!
Ver imagen AbhiGhost

Answer:0.28975 moles of nitrogen are formed .

Explanation:

[tex]4KNO_3(s)\rightarrow 2K_2O(s)+2N_2(g)+5O_2(g)[/tex]

Number of moles of [tex]KNO_3=\frac{\text{Mass of the}KNO_3}{\text{Molar mass of the}KNO_3}=\frac{58.6 g}{101.11 g/mol}=0.5795 moles[/tex]

According to reaction , 4 mol of [tex]KNO_3[/tex] produces 2 moles of [tex]N_2[/tex] gas.

Then,0.5795 moles of [tex]KNO_3[/tex] will produce=[tex]\frac{2}{4}\times 0.5795 [/tex] moles of [tex]N_2[/tex] gas:

[tex]\frac{2}{4}\times 0.5795=0.28975 moles[/tex]

0.28975 moles of nitrogen are formed.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE