Respuesta :

Solution

We are given the two equations

[tex]\begin{gathered} 2x-y=4\ldots\ldots\ldots\ldots\ldots\ldots\text{.}(1) \\ 4x-2y=6\ldots\ldots\ldots.\ldots\ldots\text{.}(2) \end{gathered}[/tex]

Now, equation (1) x 2

[tex]\begin{gathered} 4x-2y=8\ldots\ldots.\ldots\ldots\ldots\ldots\ldots(1) \\ 4x-2y=6\ldots\ldots\ldots\ldots\ldots\ldots.\ldots(2) \end{gathered}[/tex]

Equation (1) - equation (2)

[tex]\begin{gathered} (4x-4x)+(-2y-(-2y))=8-6 \\ 0+0=2 \\ 0=2 \end{gathered}[/tex]

Which is never possible!

Therefore, the system of equation is NOT consistent.

Note:

Let us also draw the graph of the eqautionm given

Therefore, the system of equation is Inconsistent and Independent

Ver imagen RealL626273
Ver imagen RealL626273
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE