Respuesta :

Answer:

Graph D

Step-by-step explanation:

3|x + 1| < 9

divide both sides by 3:

(3|x + 1|)/3 < 9/3

|x + 1| < 3

so:

x + 1 < 3 OR x + 1 > -3

first equation: x + 1 < 3

x + 1 < 3

subtract 1 from both sides:

x + 1 - 1 < 3 - 1

x < 2

(-∞,2)

Second equation:  x + 1 > -3

x + 1 < -3

subtract 1 from both sides:

x + 1 -1 > -3 - 1

x > -4

(-4,∞)

You are to graph: (-4,∞) ∩ (-4,∞)

this is Graph D.

Answer:

Graph D

Step-by-step explanation:

Given inequality:

[tex]3|x+1| < 9[/tex]

Divide both sides by 3:

[tex]\implies |x+1| < 3[/tex]

[tex]\textsf{Apply the absolute rule: \quad If $|u| < a$ when $a > 0$, then $-a < u < a$}[/tex]

[tex]\begin{aligned} \underline{\sf Case\; 1} && \underline{\sf Case\; 2}\\-3& < x+1 & \quad \quad \quad x+1& < 3\\-4& < x & x& < 2\end{aligned}[/tex]

Therefore, the solution set for the given inequality is:

[tex]\{x|-4 < x < 2\}[/tex]

When graphing inequalities on a number line:

  • < or > : open circle
  • ≤ or ≥ : close circle.
  • < or ≤ : shade to the left of the circle.
  • > or ≥ : shade to the right of the circle.

Place an open circle at x = -4 and x = 2.

Shade between the two values.

Ver imagen semsee45
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE