Respuesta :

This relationship is not true.

[tex]1 + \sec^2(x) = 1 + (1 - \tan^2(x)) = 2 - \tan^2(x)[/tex]

and

[tex]\cot^2(x) = \dfrac1{\tan^2(x)}[/tex]

Rewrite the equation in terms of only tangent.

[tex]2 - \tan^2(x) = \dfrac1{\tan^2(x)} \iff \tan^4(x) - 2\tan^2(x) + 1 = 0[/tex]

Factorize the left side.

[tex]\left(\tan^2(x) - 1\right)^2 = 0[/tex]

Solve for [tex]\tan(x)[/tex].

[tex]\tan^2(x) - 1 = 0[/tex]

[tex]\tan^2(x) = 1[/tex]

[tex]\tan(x) = \pm 1[/tex]

[tex]x = \pm\tan^{-1}(1) + n\pi = \pm\dfrac\pi4 + n\pi[/tex]

where [tex]n[/tex] is an integer. That is, the equation only holds for certain values of [tex]x[/tex], as opposed to all [tex]x[/tex], so it's not an identity.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE