Respuesta :

Answer:

A = 11

B = 8

Step-by-step explanation:

The function is 2[tex]2x^2 + x + 5[/tex]

To determine y=A and y=B simply substitute the value of x corresponding to that y-value

A is at x = -2

At x = -2,
[tex]\mathsf =2\left(-2\right)^2+\left(-2\right)+5[/tex]
= [tex]2\cdot \:4+\left(-2\right)+5[/tex]

[tex]= 8 - 2 + 5[/tex]
[tex]= 11[/tex]

So [tex]\boxed{A = 11}[/tex]

For B, note that x = 1

So y-value for x = 1 is

[tex]y = 2\cdot \:1^2+\:1+5[/tex]
[tex]=2\cdot \:1+1+5[/tex]

[tex]=2+1+5[/tex]

[tex]=8[/tex]

So [tex]\boxed{B=8}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE