Respuesta :

Answer:

[tex]\dfrac{7}{8} \textsf{ and } -\dfrac{5}{8}[/tex]

Step-by-step explanation:

To find numbers that are [tex]\dfrac{3}{4}[/tex] units distance from [tex]\displaystyle \dfrac{1}{8}[/tex] , add and subtract [tex]\dfrac{3}{4}[/tex] to and from [tex]\displaystyle \dfrac{1}{8}[/tex]

One of the points is at [tex]\displaystyle \dfrac{1}{8} + \dfrac{3}{4}[/tex] units away and the other at [tex]\displaystyle \dfrac{1}{8} - \dfrac{3}{4}[/tex] units away

  1. Compute    [tex]\displaystyle \dfrac{1}{8} + \dfrac{3}{4} :[/tex]

    [tex]\mathrm{For}\:\frac{3}{4}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:2[/tex]:

    [tex]\frac{3}{4}=\frac{3\cdot \:2}{4\cdot \:2}=\frac{6}{8}[/tex]

    [tex]\displaystyle \dfrac{1}{8} + \dfrac{3}{4} = \frac{1}{8}+\frac{6}{8} = \frac{7}{8}[/tex]
  2. Compute    [tex]\frac{1}{8}-\frac{3}{4}[/tex]
    Again for [tex]\frac{3}{4}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:2[/tex]
    [tex]\frac{3}{4}=\frac{3\cdot \:2}{4\cdot \:2}=\frac{6}{8}[/tex]

    [tex]\frac{1}{8}-\frac{3}{4} = \frac{1-6}{8} = \frac{-5}{8}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE