The solution to the compound inequality in interval notation is (-∞,-3]U(0,∞).
If the equation or inequality contains variable terms, then there might be some values of those variables for which that equation or inequality might be true. Such values are called solution to that equation or inequality.
A Set of such values is called solution set to the considered equation or inequality.
Given the compound inequality;
4(x+1)>−4 or 2x−4≤−10
First, divide by 4
x+1>-1
Now, add 1
x>0
Similarly,
2x-4≤-10
Now, add 4 both sides
2x≤-6
Now, divide 2
x≤-3
x>0 or x≤-3
basically
Thus, all numbers more than 0 or less than or equal to -3.
Hence, the solution to the compound inequality in interval notation is (-∞,-3]U(0,∞).
Learn more about inequalities here:
https://brainly.com/question/27425770
#SPJ1