The length of b and angle B and C are 3cm, 45 degrees and 79 degrees respectively.
How to determine the parameters
To determine the angles and length of sides, we use the sine rule
The sine rule is thus:
[tex]\frac{sin A}{a} = \frac{sin B}{b} = \frac{sin C}{c}[/tex]
Given;
Let's find angle C
[tex]\frac{sin 43}{2. 5} = \frac{sin C}{3. 6}[/tex]
cross multiply
0. 682 × 3. 6 = sin C × 2. 5
sin C = 2. 4552/ 2. 5
C = [tex]sin^-^1(0. 982)[/tex]
C = 79°
To find length of b
[tex]b= \sqrt{c^2 - a^2}[/tex]
substitute the values
[tex]b = \sqrt{3.6^2 - 2. 5^2}[/tex]
[tex]b = \sqrt{6. 71}[/tex]
b = 2. 59 cm
b = 3cm
To find angle B, we have
[tex]\frac{sin 43}{2. 5} = \frac{sin B}{2. 59}[/tex]
cross multiply
0. 682 × 2. 59= sin B × 2. 5
sin B = 0. 7065
[tex]B = sin^-^1(0. 7065)[/tex]
B = 45°
Hence, the length of b and angle B and C are 3cm, 45 degrees and 79 degrees respectively.
Learn more about sine rule here:
https://brainly.com/question/12827625
#SPJ1