Respuesta :

Answer:

  (x, y) = (0.5, 4) or (4, 0.5)

Step-by-step explanation:

The given equations are more easily solved by making the bases of the logarithms all the same. Then we can use substitution to form a quadratic equation that will give two solutions to the problem.

Setup

Rewriting the first equation to use base-2 logarithms, we have ...

  [tex]\log_4(xy)=\dfrac{1}{2}\qquad\text{given}\\\\\dfrac{\log_2(xy)}{\log_2(4)}=\dfrac{1}{2}\qquad\text{change of base formula}\\\\\dfrac{\log_2(x)+\log_2(y)}{2}=\dfrac{1}{2}\qquad\text{evaluate $\log_2(4)$, separate variables}\\\\\log_2(y)=1-\log_2(x)\qquad\text{solve for $\log_2(y)$}[/tex]

Solution

Substituting this expression into the second equation gives a quadratic in log₂(x).

  [tex]\log_2(x)(1-\log_2(x))=-2\qquad\text{substitute for $\log_2(y)$}\\\\\log_2(x)^2-\log_2(x)-2=0\qquad\text{put quadratic in standard form}\\\\(\log_2(x)-2)(\log_2(x)+1)=0\qquad\text{factor the quadratic}[/tex]

Solutions are values of log₂(x) that make the factors zero:

  log₂(x) -2 = 0   ⇒   log₂(x) = 2   ⇒   x = 2² = 4

  log₂(x) +1 = 0   ⇒   log₂(x) = -1   ⇒   x = 2⁻¹ = 1/2

The corresponding values of y are the other value of x:

  log₂(y) = 1 -log₂(x) = 1 -2 = -1   ⇒   y = 1/2  for  x = 4

  log₂(y) = 1 -log₂(x) = 1 -(-1) = 2   ⇒   y = 4  for  x = 1/2

Solutions are ...

  (x, y) = (4, 1/2)  or  (1/2, 4)

__

Additional comment

The attachment shows a graphing calculator solution to the original pair of equations.

Ver imagen sqdancefan
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE