contestada

If f(x)=x^2 then what is f(x+h)? an explanation would be lovely, but if not that’s okay :)

Respuesta :

Answer: [tex]f(\text{x+h}) = \text{x}^2+2\text{x}\text{h}+\text{h}^2[/tex]

====================================================

Work Shown:

[tex]f(\text{x}) = \text{x}^2\\\\f(\text{x+h}) = (\text{x+h})^2\\\\f(\text{x+h}) = (\text{x+h})(\text{x+h})\\\\f(\text{x+h}) = \text{x}*\text{x}+\text{x}*\text{h}+\text{h}*\text{x}+\text{h}*\text{h}\\\\f(\text{x+h}) = \text{x}^2+\text{x}\text{h}+\text{x}\text{h}+\text{h}^2\\\\f(\text{x+h}) = \text{x}^2+2\text{x}\text{h}+\text{h}^2\\\\[/tex]

Explanation:

I replaced each copy of x with x+h. Then I used the FOIL rule to expand things out and combine like terms. The distributive property or the box method are two other pathways you can take.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE