Respuesta :

The given trigonometric identity (cosθ − sinθ)/(cosθ + sinθ) = (1 − tanθ)/(1 + tanθ) has been proved.

In the question, we are asked to prove the trigonometric identity (cosθ − sinθ)/(cosθ + sinθ) = (1 − tanθ)/(1 + tanθ).

Going by the left-hand side of the equation, we get:

(cosθ − sinθ)/(cosθ + sinθ)

Dividing the numerator and the denominator by cosθ, we get:

{(cosθ − sinθ)/cosθ}/{(cosθ + sinθ)/cosθ}

= {cosθ/cosθ - sinθ/cosθ}/{cosθ/cosθ + sinθ/cosθ}

= (1 - sinθ/cosθ)(1 + sinθ/cosθ).

Using the identity, tanθ = sinθ/cosθ, we get:

(1 - tanθ)/(1 + tan θ)

= The right-hand side of the equation.

Hence the identity has been proved.

Thus, the given trigonometric identity (cosθ − sinθ)(cosθ + sinθ) = (1 − tanθ)(1 + tanθ) has been proved.

Learn more about trigonometric identities at

https://brainly.com/question/7331447

#SPJ9

The provided question is incomplete. The complete question is:

"Prove the trigonometric identity (cosθ − sinθ)/(cosθ + sinθ) = (1 − tanθ)/(1 + tanθ)."

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE