Find the area of the parallelogram whose vertices are listed. ​(0,0), ​(​3,7​), ​(7​,4​), ​(10​,11​)

Respuesta :

The area of the given parallelogram with vertices (0,0), (3,7), (7,4), and (10,11) is 37 sq. units.

How to calculate the area of the parallelogram with vertices?

The area of the parallelogram is

A =  |[tex]\vec a[/tex] × [tex]\vec b[/tex]| sq. units

Where '[tex]\vec a[/tex]' and '[tex]\vec b[/tex]' are the adjacents vectors of the parallelogram

[tex]\vec a[/tex] × [tex]\vec b[/tex] - is the cross product

|[tex]\vec a[/tex] × [tex]\vec b[/tex]| - is the absolute value of the magnitude of the cross product

Calculation:

It is given that,

A parallelogram with vertices A(0,0), B(3,7), C(10,11), and D(7,4)

Then, the adjacent vectors are calculated by

[tex]\vec a[/tex] = [tex]\vec {AD}[/tex]

  = [tex]\vec D-\vec A[/tex]

  = <7-0, 4-0>

  = <7, 4>

[tex]\vec b[/tex] = [tex]\vec {AB}[/tex]

  = [tex]\vec B-\vec A[/tex]

  = <3-0, 7-0>

  = <3, 7>

So, the cross product of these two vectors is,

[tex]\vec a \times \vec b[/tex] = [tex]\left[\begin{array}{ccc}i&j&k\\3&7&0\\7&4&0\end{array}\right][/tex]

        = i(0) - j(0) + k(12 - 49)

        = -37k

The magnitude of the cross product = [tex]\sqrt{(-37)^2}[/tex] = 37

Then, the area of the given parallelogram is

A = |[tex]\vec a[/tex] × [tex]\vec b[/tex]| = |37| = 37 sq. units.

Hence, the area of the given parallelogram is 37 sq. units.

Learn more about the area of a parallelogram here:

https://brainly.com/question/5959813

#SPJ1

Ver imagen pranavgera011
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE