Respuesta :

The length of the brace required is 4.3m

What is sine rule?

In a ΔABC a, b and c are the sides and A, B and C are angles then,

[tex]\frac{a}{SinA}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]

We can find the length, l as shown below:

Let AB=3m, BC=2m and AC=l

Let ∠A=25°

So, in ΔABC

[tex]\frac{BC}{sinA}=\frac{AB}{sinC}=\frac{AC}{SinB}[/tex]

[tex]\frac{BC}{sinA}=\frac{AB}{sinC}[/tex]

[tex]\frac{2}{sin25}=\frac{3}{sinC}[/tex]

[tex]\angle{C}=sin^{-1}(\frac{3\times sin25}{2} )[/tex]

∠C=39.34°

∠A+∠B+∠C=180°

∠B=180°-25°-39.34°

∠B=115.66°

[tex]\frac{BC}{sinA}=\frac{AC}{SinB}[/tex]

[tex]\frac{2}{sin25}=\frac{l}{sin(115.66)}[/tex]

[tex]l=\frac{2\times sin(115.66)}{sin25}[/tex]

l=4.2659

Rounding to nearest tenth of meter.

l=4.3m

Hence, the length of the brace required is 4.3m

Learn more about Sine Rule here:

https://brainly.com/question/25852087

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE