Respuesta :
Answer:
-1
Step-by-step explanation:
Expanding (x² − x + 2)(x − 1) we get [tex]x^{3} -x^{2} -x^{2} +x+2x-2[/tex]. When we simplify that, we get [tex]x^{3} -2x^{2} +3x-2[/tex] which fits the form Ax³ + Bx² + Cx + D.
We can see that A = 1, B = -2, C = 3, D = -2. Thus A + D = 1 - 2 = -1.
Therefore your answer is -1
Answer:
A + D = -1
Step-by-step explanation:
Given: (x² − x + 2)(x − 1) = Ax³ + Bx² + Cx + D
Step 1: Simplify using the Distributive Property.
[tex]\\\implies (x^2 - x + 2)(x - 1) \\\\\implies x(x^2 - x + 2) + -1(x^2 - x + 2)\\\\\implies x^3 - x^2 + 2x - x^2 + x - 2\\\\\implies \bold{1}x^3 -\bold{2}x^2 + \bold{3}x - \bold{2}[/tex]
Step 2: Determine the value of the coefficients.
[tex]\implies {\sf A} = 1, {\sf B} = -2, {\sf C} = 3, {\sf D} = -2[/tex]
Step 3: Find the value of A + D.
[tex]\implies {\sf A} + {\sf D} \Rightarrow 1 - 2 = \boxed{-1}[/tex]