contestada

The loudness, L, measured in decibels (Db), of a sound intensity, I, measured in watts per square meter, is defined as
1
L-10log where lo-10-12
and is the least intense sound a human ear can hear. What is the approximate loudness
of a dinner conversation with a sound intensity of 10-7?

Respuesta :

[tex]\\ \rm\dashrightarrow B=10log\dfrac{I}{I_o}[/tex]

[tex]\\ \rm\dashrightarrow B=10\log\dfrac{10^{-7}}{10^{-12}}[/tex]

[tex]\\ \rm\dashrightarrow B=10log10^5[/tex]

[tex]\\ \rm\dashrightarrow B=10\times 5log10[/tex]

[tex]\\ \rm\dashrightarrow B=10(5)[/tex]

[tex]\\ \rm\dashrightarrow B=50dB[/tex]

Answer:

50 Db

Step-by-step explanation:

Given:

[tex]L=10 \log \dfrac{I}{I_0}[/tex]

[tex]I_0=10^{-12}[/tex]

where:

  • L is the loudness measured in decibels (Db)
  • I is the sound intensity measured in w/m²

To find the approximate loudness of a dinner conversation with a sound intensity of [tex]I=10^{-7}[/tex], substitute the values of I and I₀ into the given equation and solve for L:

[tex]\implies L=10 \log \dfrac{10^{-7}}{10^{-12}}[/tex]

[tex]\textsf{Apply exponent rule} \quad \dfrac{a^b}{a^c}=a^{b-c}:[/tex]

[tex]\implies L=10 \log 10^{-7-(-12)[/tex]

[tex]\implies L=10 \log 10^5[/tex]

[tex]\textsf{Apply the log power law}: \quad \log_ax^n=n\log_ax[/tex]

[tex]\implies L=5 \cdot 10 \log 10[/tex]

[tex]\implies L=50 \log 10[/tex]

As the given log does not have a specified base, assume the base is 10.

[tex]\implies L=50 \log_{10} 10[/tex]

[tex]\textsf{Apply log law}: \quad \log_aa=1[/tex]

[tex]\implies L=50 (1)[/tex]

[tex]\implies L=50\:\:\sf Db[/tex]

Learn more about log laws here:

https://brainly.com/question/27963321

https://brainly.com/question/28016999

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE