s157778
contestada

Select the equivalent expression. (Please Help!!!)
(a/b^3)^4 = ?
Choose 1 answer:
A. a^8/b^8
B. a^4/b^12
C. a/b^81
D. a^5/b^7

Respuesta :

Answer: B. a^4/b^12

Step-by-step explanation:

[tex]\large\displaystyle\text{$\begin{gathered}\sf \left(\frac{a}{b^{3} }\right)^{4} \end{gathered}$}[/tex]

Use the rules of exponents to simplify the expression.

  • [tex]\large\displaystyle\text{$\begin{gathered}\sf \left(\frac{a^{1} }{b^{3}}\right)^{4} \end{gathered}$}[/tex]

To raise the quotient of two numbers to a power, raise each power to the power and then divide it.

  • [tex]\large\displaystyle\text{$\begin{gathered}\sf \frac{(a^{1})^{4} }{(b^{3})^{4} } \end{gathered}$}[/tex]

To raise a power to another power, multiply the exponents.

  • [tex]\large\displaystyle\text{$\begin{gathered}\sf \frac{a^{4} }{b^{3\times4} } \end{gathered}$}[/tex]

Multiply 3 by 4.

  • [tex]\boxed{\large\displaystyle\text{$\begin{gathered}\sf \frac{a^{4} }{b^{12} } \end{gathered}$}}[/tex]

We conclude that: the correct option is "B".

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE