Using the z-distribution, the 95% confidence interval of the population mean is: (17.5, 24.5).
The confidence interval is:
[tex]\overline{x} \pm z\frac{\sigma}{\sqrt{n}}[/tex]
In which:
In this problem, we have a 95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.
For this problem, the other parameters are:
[tex]\overline{x} = 21, \sigma = 26.8, n = 225[/tex]
Hence the bounds of the interval are:
[tex]\overline{x} - z\frac{\sigma}{\sqrt{n}} = 21 - 1.96\frac{26.8}{\sqrt{225}} = 17.5[/tex]
[tex]\overline{x} + z\frac{\sigma}{\sqrt{n}} = 21 + 1.96\frac{26.8}{\sqrt{225}} = 24.5[/tex]
The interval is: (17.5, 24.5).
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ1