Respuesta :

The possible zeros of f(x) = 3x^6 + 4x^3 -2x^2 + 4 are [tex]\mathbf{\pm\{1,2,4,\frac 13, \frac 23,\frac{4}{3}}\}[/tex]

How to determine the possible zeros?

The function is given as:

f(x) = 3x^6 + 4x^3 -2x^2 + 4

The leading coefficient of the function is:

p = 3

The constant term is

q = 4

Take the factors of the above terms

p = 1 and 3

q = 1, 2 and 4

The possible zeros are then calculated as:

[tex]\mathbf{Zeros = \pm\frac{Factors\ of\ q}{Factors\ of\ p}}[/tex]

So, we have:

[tex]\mathbf{Zeros = \pm\frac{1,2,4}{1,3}}[/tex]

Expand

[tex]\mathbf{Zeros = \pm\frac{1,2,4}{1},\pm\frac{1,2,4}{3}}[/tex]

Solve

[tex]\mathbf{Zeros = \pm\{1,2,4,\frac 13, \frac 23,\frac{4}{3}}\}[/tex]

Hence, the possible zeros of f(x) = 3x^6 + 4x^3 -2x^2 + 4 are [tex]\mathbf{\pm\{1,2,4,\frac 13, \frac 23,\frac{4}{3}}\}[/tex]

Read more about rational root theorem at:

https://brainly.com/question/9353378

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE