Respuesta :

The expression which is equivalent to [tex]5 log_{10}x+log_{10}20-log_{10}10[/tex] is

[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-1[/tex].

What is the logarithmic equation?

A logarithmic equation exists as an equation that applies the logarithm of an expression having a variable.

Product Rule Law: [tex]log_{a} (MN) = log_{a} M + log_{a} N[/tex]

Quotient Rule Law: [tex]log_{a} (M/N) = log_{a} M - log_{a} N[/tex]

Power Rule Law: [tex]log_{a}M^{n} = n log_{a} M[/tex]

Given: [tex]5 log_{10}x+log_{10}20-log_{10}10[/tex]

[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5) +log_{10}20 -log_{10}10[/tex]

apply the law of logarithm

[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5*20/10)[/tex]

[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5*2)[/tex]

[tex]5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(2x^5)[/tex]

Another possible equivalent expression is:

[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(x^5*20)-log_{10}10[/tex]

[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-log_{10}10[/tex]

Substitute the value of [tex]log_{10}10 = 1[/tex]

[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-1[/tex]

Therefore, the correct answer

[tex]$5 log_{10}x+log_{10}20-log_{10}10 = log_{10}(20x^5)-1[/tex].

To learn more about logarithm refer to:

https://brainly.com/question/23861954

#SPJ9

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE