Respuesta :

Answer:

[tex]\sf x = \dfrac{n - 2mp}{2m}[/tex]

Step-by-step explanation:

              [tex]\sf 3m = m + \dfrac{n}{p + x}\\[/tex]

        [tex]\sf 3m - m = \dfrac{n}{p +x}[/tex]

                [tex]\sf 2m = \dfrac{n}{p +x}[/tex]

Now cross multiply,

          2m*(p +x) = n

To open the parenthesis, multiply 2m by p and x.

        2mp + 2mx = n

 Isolate the term with variable 'x'

                    2mx = n - 2mp

Now, isolate 'x', by dividing both sides by 2m

                          [tex]\sf x = \dfrac{n-2mp}{2m}[/tex]                            

Answer:

x = [tex]\frac{N-2MP}{2M}[/tex]

Step-by-step explanation:

3M = M + [tex]\frac{N}{P+x}[/tex] ( subtract M from both sides )

2M = [tex]\frac{N}{P+x}[/tex] ( multiply both sides by P + x to clear the fraction )

2M(P + x) = N ← distribute parenthesis on left side

2MP + 2Mx = N ( subtract 2MP from both sides )

2Mx = N - 2MP ( divide both sides by 2M )

x = [tex]\frac{N-2MP}{2M}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE