Pentagon ABCDE and pentagon A″B″C″D″E″ are shown on the coordinate plane below:

Which two transformations are applied to pentagon ABCDE to create A″B″C″D″E″?

Pentagon ABCDE and pentagon ABCDE are shown on the coordinate plane below Which two transformations are applied to pentagon ABCDE to create ABCDE class=

Respuesta :

The transformations that are applied to pentagon ABCDE to create A"B"C"D"E" are:

1) Translation (x, y) → (x + 8, y + 2)

2) Reflection across the x-axis (x, y) → (x, -y)

So, the overall transformation given in the graph is (x, y) → {(x + 8), -(y + 2)}.

What are the transformation rules?

The transformation rules are:

  • Reflection across x-axis: (x, y) → (x, -y)
  • Reflection across y-axis: (x, y) → (-x, y)
  • Translation: (x, y) → (x + a, y + b)
  • Dilation: (x, y) → (kx, ky)

Calculation:

The pentagons in the graph have vertices as

For the pentagon ABCDE: A(-4, 5), B(-6, 4), C(-5, 1), D(-2, 2), and (-2, 4)

For the pentagon A"B"C"D"E": A"(4, -7), B"(2, -6), C"(3, -3), D"(6, -4), and E"(6, -6)

Consider the vertices A(-4, 5) from the pentagon ABCDE and A"(4, -7) from the pentagon A"B"C"D"E".

Applying the Translation rule for the pentagon ABCDE:

The rule is (x, y) → (x + a, y + b)

So, the variation is

-4 + a = 4

⇒ a = 4 + 4 = 8

5 + b = 7

⇒ b = 7 - 5 = 2

So, the pentagon ABCDE is translated by (x + 8, y + 2).

Applying the Reflection rule for the translated pentagon:

The translated pentagon has vertices (x + 8, y + 2).

When applying the reflection across the x-axis,

(x + 8, y + 2) → {(x + 8), -(y + 2)}

Therefore, the complete transformation of the pentagon ABCDE to the pentagon A"B"C"D"E" is (x, y) → {(x + 8), -(y + 2)}

Verification:

A(-4, 5) → ((-4 + 8), -(5 + 2)) = (4, -7)A"

B(-6, 4) → ((-6 + 8), -(4 + 2)) = (2, -6)B"

C(-5, 1) → ((-5 + 8), -(1 + 2)) = (3, -3)C"

D(-2, 2) → ((-2 + 8), -(2 + 2)) = (6, -4)D"

E(-2, 4) → ((-2 + 8), -(4 + 2)) = (6, -6)E"

Learn more about transformation rules here:

https://brainly.com/question/4289712

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE