Respuesta :

Answer:

[tex]\sf t_{20}= 0[/tex]

Step-by-step explanation:

Arithmetic sequence:

      [tex]\sf \boxed{\bf n^{th} \ term = a + (n-1)d}\\\\\text{Here, a is the first term ; d is the common difference }[/tex]

6th term is 14 ⇒ [tex]\sf t_6 = 14[/tex]

                a + (6 - 1)d = 14

                    a  +  5d = 14  --------------(I)

14th term is 6 ⇒[tex]\sf t_{14} = 6[/tex]

             a + (14-1)d = 6

                  a + 13d = 6 ----------------(II)

Subtract equation (II) from equation(I)

        (I)          a + 5d = 14

        (II)         a + 13d = 6

                    -    -          -

                            -8d = 8

                               d  = 8 ÷(-8)      

                              [tex]\sf \boxed{\bf d= (-1)}[/tex]

Plugin d = -1 in equation (I)

a + 5(-1) = 14

      a -5  = 14

             a = 14 + 5

             [tex]\sf \boxed{\bf a = 19}[/tex]  

20th term:

 [tex]\sf t_{20}= 19 + 19*(-1)[/tex]

       = 19 - 19

   [tex]\sf \boxed{\bf t_{20} = 0}[/tex]

Answer:

0

Step-by-step explanation:

The number of terms of an Arithmetic progressions has the formular.

Tn = a + ( n - 1 ) d

From the question,

6th term = 14

14th term = 6

Therefore,

a + 5d = 14 -----------(1)

a + 13d = 6 ----------(2)

subtracting

-8d = 8

dividing bothsides by -8

[tex] \frac{ - 8d}{ - 8} = \frac{8}{ - 8} \\ d = - 1[/tex]

Therefore,

common difference= -1

substituting the value of d into equation (1)

a + 5 ( -1) = 14

a - 5 = 14

a = 14 + 5 = 19

First term = 19

For the 20th term

T 20 = a + 19d

19 + 19 ( -1 )

19-19 = 0

Therefore,

20th term = 0

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE