Answer:
Cos² x
Step-by-step explanation:
[tex]\sf Cos^2 \ x *Csc^2 \ x-Cos^2 \ x *Cot^2 \ x = Cos^2 \ x (Csc^2 \ x - Cot^2 \ x)[/tex]
[tex]\sf = Cos^2 \ x \left(\dfrac{1}{Sin^2 \ x} - \dfrac{Cos^2 \ x}{Sin^2 \ x}\right)\\\\= Cos^2 \ x \left(\dfrac{1-Cos^2 \ x}{Sin^2 \ x}\right)\\\\\boxed{\bf Indentity: \ 1 - Cos^2 \ x = Sin^2 \ x}\\\\\\= Cos^2 \ x \left(\dfrac{Sin^2 \ x}{Sin^2 \ x}\right)\\\\= Cos^2 \ x[/tex]