Respuesta :

The given differential equation has characteristic equation

[tex]r^5 - 4r^4 + 4r^3 - r^2 + 4r - 4 = 0[/tex]

Solve for the roots [tex]r[/tex].

[tex]r^3 (r^2 - 4r + 4) - (r^2 - 4r + 4) = 0[/tex]

[tex](r^3 - 1) (r^2 - 4r + 4) = 0[/tex]

[tex](r^3 - 1) (r - 2)^2 = 0[/tex]

[tex]r^3 - 1 = 0 \text{ or } (r-2)^2=0[/tex]

The first case has the three cubic roots of 1 as its roots,

[tex]r^3 = 1 = 1e^{i0} \implies r = 1^{1/3} e^{i(0+2\pi k)/3} \text{ for } k\in\{0,1,2\} \\\\ \implies r = 1e^{i0} = 1 \text{ or } r = 1e^{i2\pi/3} = -\dfrac{1+i\sqrt3}2 \text{ or } r = 1e^{i4\pi/3} = -\dfrac{1-i\sqrt3}2[/tex]

while the other case has a repeated root of

[tex](r-2)^2 = 0 \implies r = 2[/tex]

Hence the characteristic solution to the ODE is

[tex]y_c = C_1 e^x + C_2 e^{-(1+i\sqrt3)/2\,x} + C_3 e^{-(1-i\sqrt3)/2\,x} + C_4e^{2x} + C_5xe^{2x}[/tex]

Using Euler's identity

[tex]e^{ix} = \cos(x) + i \sin(x)[/tex]

we can reduce the complex exponential terms to

[tex]e^{-(1\pm i\sqrt3)/2\,x} = e^{-x/2} \left(\cos\left(\dfrac{\sqrt3}2x\right) \pm i \sin\left(\dfrac{\sqrt3}2x\right)\right)[/tex]

and thus simplify [tex]y_c[/tex] to

[tex]y_c = C_1 e^x + C_2 e^{-x/2} \cos\left(\dfrac{\sqrt3}2x\right) + C_3 e^{-x/2} \sin\left(\dfrac{\sqrt3}2x\right) \\ ~~~~~~~~ + C_3 e^{-(1-i\sqrt3)/2\,x} + C_4e^{2x} + C_5xe^{2x}[/tex]

For the non-homogeneous ODE, consider the constant particular solution

[tex]y_p = A[/tex]

whose derivatives all vanish. Substituting this into the ODE gives

[tex]-4A = 69 \implies A = -\dfrac{69}4[/tex]

and so the general solution to the ODE is

[tex]y = -\dfrac{69}4 + C_1 e^x + C_2 e^{-x/2} \cos\left(\dfrac{\sqrt3}2x\right) + C_3 e^{-x/2} \sin\left(\dfrac{\sqrt3}2x\right) \\ ~~~~~~~~ + C_3 e^{-(1-i\sqrt3)/2\,x} + C_4e^{2x} + C_5xe^{2x}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE