Please please Help!

Need Answer to Multiple Choice! Brainliest!






The scores on the ACT exam are normally distributed with a mean of 21 and a standard

deviation of 5. If we selected a random sample of 37 test takers, what is the probability that the

sample mean of those test takers who would be less than a 19.8?

a) .0721

b) .5000

c) .0808

d) .0582

Respuesta :

Answer:

a)  0.0721

Step-by-step explanation:

Let the random variable X be the score on the ACT exam.

Given:

  • mean (μ) = 21
  • standard deviation (σ) = 5

Therefore, the random variable X is normally distributed:

[tex]X \sim\textsf{N}(21,5^2)[/tex]

Z-score for a sample mean

[tex]\textsf{If }\: X \sim\textsf{N}(\mu,\sigma^2)\:\textsf{ then }\: \overline{X} \sim \left(\mu,\dfrac{\sigma^2}{n}\right) \implies Z=\dfrac{\overline{X}-\mu}{\sigma / \sqrt{n}} \sim \textsf{N}(0,1)[/tex]

[tex]\textsf{then the test statistic is}: \quad z=\dfrac{\overline{x}-\mu}{\sigma / \sqrt{n}}[/tex]

Given:

  • [tex]\overline{x}[/tex] = 19.8
  • μ = 21
  • σ = 5
  • n = 37

Therefore, the test statistic is:

[tex]\implies z=\dfrac{19.8-21}{5/ \sqrt{37}}=-\dfrac{6\sqrt{37}}{25}=-1.459863007=-1.46\:\: \sf (3\:s.f.)[/tex]

Using the Z-tables to find the probability:

[tex]\implies \text{P}(Z \leq -1.46)=0.0721[/tex]

Ver imagen semsee45
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE