Respuesta :

Answer:

  g(x) = -√(-x +9)

Step-by-step explanation:

The relevant transformations are ...

  • f(x -h) . . . . . shifts the graph of f(x) right h units
  • f(x) +k . . . . . shifts the graph of f(x) up k units
  • -f(x) . . . . . . . reflects the graph of f(x) over the x-axis
  • f(-x) . . . . . . . reflects the graph of f(x) over the y-axis

Application

Applying the transformations in the specified order, we have ...

  f(x) = √x

  f(x +9) = √(x +9) . . . . . . . shifted 9 units to the left

  -f(x +9) = -√(x +9) . . . . . . shifted 9 left, reflected in the x-axis

  -f(-x +9) = -√(-x +9) . . . . shifted 9 left, reflected in x-axis, reflected in y-axis

The shifted, reflected function is ...

  g(x) =  -√(-x +9)

__

Additional comment

The graph shows the original f(x) = √x function in red. The shifted, reflected function is shown in blue. Note that the initial left shift changes appearance to a right shift when it is reflected over the y-axis.

Ver imagen sqdancefan
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE