Respuesta :

Answer:

Step-by-step explanation:

10yy'=x

[tex]10y\frac{dy}{dx} =x\\separating~the~variables\\10 ydy=xdx\\integrating\\\int 10ydy=\int xdx+c\\\frac{10y^2}{2} =\frac{x^2}{2} +c\\10y^2=x^2+2c\\when~x=10\\y=4\\10(4)^2=10^2+2c\\160=100+2c\\2c=160-100=60\\c=\frac{60}{2} =30\\10y^2=x^2+60\\10y^2-x^2=60[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE